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ABSTRACT: The impact of spherical nanoparticles (NPs) on the segmental
dynamics of polymer melts is investigated. The addition of NPs broadens the
segmental dynamics with effects of both particle size and loading. Interfacial bound
layer thickness is calculated by the difference in magnitude of the segmental dynamics
of pure polymer and nanocomposites. These theoretical models suggest that the
bound layer thickness in the case of strongly adsorbing polymer matrices may
increase with particle size.

Some physical properties (e.g., mechanical, electrical,
thermal, and barrier properties) of polymers are dramat-

ically altered by the addition of nanofillers.1 While the exact
mechanism of these changes is still controversial, there is a
general agreement that the polymer−filler interaction, which is
concentrated in a region near the polymer−filler interface, is
crucial.2 Various experimental techniques (e.g., differential
scanning calorimetry, dielectric relaxation spectroscopy, and
thermally stimulated depolarization current)3 suggest the
existence of an interfacial region by observing decreases in
the polymer chains’ dynamic mobility with the introduction of
nanoparticles. The presence of the interfacial region is often
attributed to enthalpic attraction between the hydroxyl groups
on the filler surface and specific groups on the polymer chain.3

The layer of polymers affected by the nanoparticle is within a
few nanometers from the filler surface. Therefore, experimen-
tally resolving this dynamic change is challenging.
Addition of nanofillers has been reported to have a negligible

influence on the local segmental relaxation function and
relaxation times of polymer matrices.4 Recent studies have
shown that the curvature of nanoparticles affects the
interactions between polymers and nanofillers and, thus, affects
the bound polymer layer.5−7 In 1974, Meissner used a random-
process model to estimate the processes involved in the
polymer−filler interaction, discussing the changes of bound
layer thickness with filler concentration, filler surface area, and
reactivity of the filler surface.8 Garvey et al. stated that the
volume per surface area of the bound layer decreases with
increasing curvature, by assuming the bound layer mass per
surface area is independent of curvature.9 Baker et al. further
illustrated that larger curvature allows more polymer segments
to access and be immobilized by the surface.10 Harton et al.
used mean-field theory to predict that the bound layer thickness
could decrease by a factor of 2 when the planar surfaces are

reduced to small nanoparticles.7 Clearly, bound polymer layer
thickness is influenced by particle size. However, unless the
thickness is comparable to the particle size, the curvature effect
should not too significantly influence the bound layer thickness.
Klonos et al. found that the bound layer thickness for titania/
poly(dimethylsiloxane) (PDMS) nanocomposites is twice as
large as that for PDMS/silica nanocomposites, which they
attributed to stronger interactions.11 Although the larger size of
the TiO2 particles may also play a role, they suggest that the
bound layer thickness would also be affected by other factors,
such as the properties of filler and polymer. How those factors
act together to influence the bound layer thickness is what
really matters in the study of this bound layer mechanism and is
investigated herein.
In this letter, dielectric relaxation spectroscopy (DRS) in the

frequency range of 10−1 to 107 Hz is used to investigate the
segmental relaxation of poly-2-vinylpyridine (P2VP) with silica
nanoparticles, whose interaction with P2VP is strong.7,12 The
thickness of the bound polymer layer surrounding each silica
nanoparticle is estimated from the reduction in the magnitude
of the segmental relaxation in the presence of silica nano-
particles with different sizes and loadings. The bound layer
thickness is found to weakly increase with particle size and this
finding is discussed in relation to changes in interfacial
curvature.
Nanocomposite systems containing silica nanoparticles

(generously donated by Nissan Chemicals), with radii of R =
7, 11.5, 25, and 50 nm, well-dispersed in the P2VP matrix (Mw

= 105000; Mw/Mn = 1.08; Tg = 98 °C; Polymer Source, Inc.)
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are investigated at various concentrations. The samples were
prepared by solution casting from either 2-butanone (for R = 7
and 25 nm particles) or isopropanol (for R = 11.5 and 50 nm
particles) with pyridine (Sigma-Aldrich) as dispersant (pyridine
acts as a Lewis base, accepting a proton from silica, leaving silica
with a negative charge and pyridinium counterions, that charge-
stabilize nanoparticles in solution.). Ultrasonication was applied
during the mixing of silica and P2VP in solution to improve
dispersion. After removal of the solvent, the polymer
nanocomposites were then characterized by transmission
electron microscopy (TEM) to determine the dispersion state
of the nanoparticles in the polymer matrix. The samples were
then molded into thin discs at 150 °C and sandwiched between
two freshly polished brass electrodes with diameters of 15 and
25 mm for the dielectric measurements. Samples were annealed
under vacuum at 120 °C for 12 h prior to the measurements on
a Novocontrol GmbH Concept 40 Broadband Dielectric
Spectrometer with a Quatro temperature control system
(temperature precision of 0.1 °C). The dielectric data were
normalized by requiring the same dielectric permittivity at the
highest frequency. This normalization is needed to correct for
minor changes of sample thickness/electric capacity due to the
thermal expansion during the measurements.
Figure 1a shows the angular frequency dependence of

dielectric loss ε″ from 120 to 170 °C for nanoparticles of radius

R = 7 nm and weight fraction w = 40 wt % in P2VP/silica
nanocomposites. The main peak is assigned to the segmental α
relaxation. Toward the low frequency side, the DC conductivity
is evident as ε″ ∼ 1/ω. The broadening at the highest
frequencies is due to more separated α and β processes at lower
T, because the incoming β-relaxation has weaker temperature
dependence than the α-relaxation (A comparison of the
dielectric mode distribution at different T is shown in Figure
S1 of Supporting Information). Therefore, different nano-
composites are examined at a single T = 130 °C = Tg + 32 °C,
where the α-relaxation can be fully resolved and cleanly
separated from the conductivity at lower frequency and the β-
relaxation at higher frequency.
The frequency-domain Havriliak−Negami (HN) function is

used to fit the dielectric segmental relaxation of polymers and
other glass-forming liquids.13

ε ω ε ε
ωτ

* = + Δ
+ α γ∞ i
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ε∞ is the dielectric permittivity at high frequency before the α-
relaxation, Δε is the dielectric relaxation strength of the α-
relaxation, while α and γ are the two shape parameters of the
HN function.

The HN function (eq 1 with four parameters) can
approximate the frequency domain counterpart of the
Kolrausch−Williams−Watts (KWW) function in the time
domain (with only three parameters) using an additional
restriction on the two shape parameters α and γ (eq 2), as
derived by Alvarez et al.14

γ α= − −1 0.812(1 )0.387
(2)

β αγ= ( )1/1.23
(3)

With this constraint in place, the fits involve three parameters:
the HN characteristic time τHN, the β stretching exponent and
the dielectric strength Δε. Since the dielectric loss of the α-
relaxation is affected by conductivity at low ω, their fitting to
the KWW equation is done on the derivative formalism defined
as εder(ω) = −π/2 × dε′(ω)/d ln ω.15

Figure 2 shows εder of the α-relaxations at T = 130 °C for
P2VP/silica nanocomposites with the same nanoparticle radius
R = 7 nm at different NP weight fractions w (from 0 to 60 wt
%), as indicated. The symbols are the experimental results
multiplied by a factor of A as indicated, to avoid overlapping of
the plots. For w = 0, the red curve is the KWW fit of pure P2VP

Figure 1. Dielectric loss ε″ (ω) as a fucntion of angular frequency ω
from 120 to 170 °C for a nanocomposite melt comprised of 40 wt %
of R = 7 nm silica in P2VP.

F i g u r e 2 . D i e l e c t r i c d e r i v a t i v e s p e c t r a
εder(ω) = −π/2 × dε′(ω)/d ln ω at T = 130 °C (symbols) for
nanocomposites with the same particle radius R = 7 nm and different
weight fractions w as indicated, multiplied by scale factor A for clarity,
also indicated. Pure P2VP (top curve) is fit to KWW (red curve) to
obtain εder,P2VP and ϕP2VPεder,P2VP is compared with each data set as the
red curves. Finally, KWW fits of P2VP/silica nanocomposites (black
curves with β as indicated) are added for comparison.
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with β = 0.57. For comparison, that KWW fit of pure P2VP
εder,P2VP is multiplied by the volume fraction of P2VP in the
system, ϕP2VP = (1 − w)/ρP2VP/[w/ρparticle + (1 − w)/ρP2VP]
with the density ρP2VP = 1.15 g/cm3 and ρparticle = 2.2 g/cm3,
and added for comparison with experimental results at each w,
as the red curves. Compared with ϕP2VPεder,P2VP, the
experimental εder shows broader distribution and lower
intensity as loading fraction is increased.
To quantify the change after adding particles, the

experimental results are fit with β, Δε, and τHN as three fitting
parameters. The dielectric strength of the segmental relaxation,
Δε, directly measures the amount of free polymer, assuming
there is no difference between the dielectric strength per unit
volume of the bulk polymer and nanocomposite matrix.
Therefore, by comparing the difference between Δε of P2VP
and P2VP/silica, the volume fraction of free polymer in
nanocomposites can be calculated:

ϕ ε
ε

= Δ
Δfree

P2VP (4)

Since the system consists of only nanoparticles, polymer in
the bound layer and free polymer, (1 − ϕfree)/ϕparticle
corresponds to a ratio of volumes of a particle + bound layer
shell and that of the particle alone. Then, the radius of each
nanoparticle + bound layer shell is [(1 − ϕfree)/ϕparticle]

1/3R,
and the bound layer thickness is
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In eq 5, each particle is assumed to be identical and
homogeneously dispersed, as confirmed in TEM measurements
(see Figure 3b−d) where no particle clusters are observed for
filler with R = 11.5, 25, and 50 nm, even at the high loading
fraction of w = 40 wt %.
Figure 3a shows the calculated bound layer thickness δ for all

the P2VP/silica nanocomposites, having R = 7, 11.5, 25, and 50
nm at T = 130 °C, plotted against weight percent of silica. The

uncertainty of δ decreases with decreasing particle size, leading
to more particle−polymer interface per unit volume. It is noted
that the bound layer thickness is not sensitive to a change of
loading fraction, possibly because the particles are well
separated even at high loading (see TEM images in Figure
3). In the inset of Figure 3a, the average of δ for the same
particle at different loading fraction, δ ̅, is plotted against
reciprocal particle radius 1/R: It is noted that δ ̅ is in a range of
1 to 2.5 nm and decreases slightly with decreasing R.
One possible explanation for this decrease is the curvature of

the particles. To explain the role of curvature, consider a simple
case where a unit of interface is assumed to confine a fixed
amount of segments. Assume a bound layer of thickness δ∞ can
be formed for a flat interface. Then, for a particle of radius R,
the volume of confined segments is δ∞4πR

2, leading to a
volume of a particle + bound layer shell 4πR3/3 + δ∞4πR

2, and
bound layer thickness:

δ δ= + −∞R R R R( ) (3 )2 3 1/3
(6)

Note that δ(R) = δ∞ when R ≫ δ∞, where a flat interface can
be assumed. In the inset of Figure 3a, the curve is δ(R)
calculated from eq 6 with δ∞ = 1.5 nm, the Kuhn segment
length of P2VP. This simple calculation reflects the trend
observed for the particle size dependence of average bound
layer thickness. Nevertheless, one should note that the decrease
of δ̅ with R is stronger than the simple prediction, meaning a
unit area of the more curved surface effectively confines a
smaller amount of segments than a unit area of the flatter
surface.
To further check this point, in Figure 4a, the KWW shape

parameter β is plotted against loading fraction w. Note that β
decreases with increasing loading and also with decreasing R,
both leading to larger total surface area of particles per unit
volume. Figure 4b tries to normalize the change of interface
area per unit volume for different particle sizes: since the
average surface area of particles per unit volume of nano-
composites can be written as AV = ϕparticleS/V, where S = 4πR2

and V = 4πR3/3 are the surface area and volume per particle,
respectively, leading to AV = 3ϕparticle/R. In Figure 4b, β is
plotted against AV = 3ϕparticle/R. At the same AV, β is lower for
larger R, meaning that larger particles broaden the segmental
mode distribution more after AV has been properly normalized.
This result is in accordance with a conclusion from the inset of
Figure 3: a unit area of flatter surface can constrain more
polymer segments.
Figure 5 compares the bound layer thicknesses obtained for

PDMS/silica,11 PDMS/titania,11 and P2VP/silica from DRS,
and for P2VP/silica from thermogravimetric analysis (TGA).12

(In ref 12, dynamic light scattering (DLS) and transmission
electronic microscopy (TEM) were used to determine the size
of the absorbed polymer layer that increases with the radius of
gyration of the polymer chains. The adsorbed layer is not
compared in Figure 5 because it is conceptually different from
the bound layer determined in this study.) Interestingly, the
bound layer thickness extracted from TGA is comparable to
that from DRS, meaning that the chains with segments strongly
adsorbed to the particles are comparable to those being
immobilized. The bound layer thickness is comparable to the
Kuhn length (=1.5 nm) of adsorbed polymer and decreases as
smaller particles are used. For PDMS/silica and PDMS/titania,
the overall trend is the same: δ increases weakly with R. Klonos
et al. argued that the particle/polymer energetic interactions are
stronger in the case of titania/PDMS than silica/PDMS, leading

Figure 3. (a) Bound layer thickness δ (calculated at reference
temperature 130 °C) as a function of particle weight percent w. Inset:
Average bound layer thickness δ ̅ as a function of particle radius R.
Solid line is prediction of eq 6 with δ∞ = 1.5 nm. Right panels: (b−d)
TEM images of P2VP/silica nanocomposites with different radius R =
11.5, 25, and 50 nm at the same high loading w = 40 wt %.
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to the larger δ for the former.11 Nevertheless, they utilized
larger titania particles than silica particles, and this size
difference may account for their observations.
Predictions of eq 6 (thick solid curves in Figure 5, also shown

in the inset of Figure 3) capture the overall trend: all
experimental data are bracketed in two sets of predictions at

two limiting conditions δ∞ = 1.25 (lower bound) and 4 nm
(upper bound). In comparison to the predictions, δ decreases
more abruptly with R in DRS and TGA, meaning a unit of
more curved interface immobilizes fewer segments. The
stronger decrease of δ with R revealed in the experiments
suggests two important points for application of nano-
composites: (1) a possibility to tune the bound layer thickness
by changing the size of nanoparticles and (2) sufficiently small
particles (smaller than R = 7 nm) might have negligible bound
layer and act simply as plasticizers for the polymer matrix.
Recently, Holt et al. also evaluated the bound layer thickness

via DRS for similar P2VP/silica nanocomposites.16 They
concluded an interfacial thickness of δ = 4−6 nm for
nanoparticles with R = 15 nm, which is more than two times
the bound layer thickness determined in the current study. Holt
et al. separate the broadened dielectric α process into two
overlapping parts; a component far from the particles that is
unaffected (but smaller in magnitude) by the particles and a
very broad bound layer process (see Figure 4d in ref 16). Their
assumption thus naturally leads to a significantly thicker bound
layer estimation. Herein the analysis is based on a single process
broadening as particles are added and attributes the reduction
of dielectric intensity to immobile segments in the bound layer.
There is also a far slower dielectric process in εder, detailed in
Figure S2 in Supporting Information, as reported by
Papadopoulos et al.17 for pure P2VP and noted also in Holt
et al.’s work (Figure 4b in ref 16), whose origins are unclear but
has been suggested to originate from charge separation18 and
there is no trend of the magnitude of this slower process with
particle loading.
In summary, dielectric relaxation spectroscopy was used to

study the main segmental α relaxation of a series of silica
hydrophilic nanoparticles in polar P2VP polymer matrices with
various silica sizes and concentrations. It is noted that smaller
silica particles and higher filler concentrations slow down and
broaden the segmental relaxation significantly. Furthermore,
dielectric intensity of the α-relaxation is lower for nano-
composites than that expected from the volume fraction of the
polymer matrix and dielectric strength of the bulk P2VP. The
decrease of dielectric intensity is attributed to segments
immobilized in the bound layer, thereby allowing an evaluation
of the bound layer thickness by dielectric relaxation spectros-
copy. The relationship between the bound layer thickness and
particle size suggests a possibility to tune the bound layer
thickness by changing the size of the nanoparticles.
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Figure 4. (a) KWW shape parameter β as a function of particle weight
fraction w for the P2VP/silica nanocomposites with R, as indicated at
T = 130 °C. (b) KWW shape parameter β at 130 °C as a function of
the total particle surface area per unit volume 3ϕparticle/R.

Figure 5. (a) Bound layer thickness δ as a function of particle radius R
for the P2VP/silica inferred from DRS and TGA;12 PDMS/silica11 and
PDMS/titania11 inferred from DRS; predictions from eq 6 (solid
curves) with bound layer thickness on a flat surface δ∞ = 1.25
(estimated lower bound) and 4 nm (estimated upper bound).
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